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Abstract The main indicator of dynamic balance is the ZMP . Its original notion
assumes that both feet of the robot are in contact with the flat horizontal surface
(all contacts are in the same plane) and that the friction is high enough so that
sliding would not occur. With increasing capabilities of humanoid robots and the
higher complexity of the motion that needs to be performed, these assumptions
might not hold. Having in mind that, the system is dynamically balanced if there
is no rotation about the edges of the feet and if the feet do not slide, we propose a
novel approach for testing the dynamic balance of bipedal robots, by using linear
contact wrench conditions compiled in a single matrix (Dynamic Balance Matrix).
The proposed approach has wide applicability since it can be used to check the
stability of different kinds of contacts (including point, line and surface) with ar-
bitrary perimeter shapes. Motion feasibility conditions are derived on the basis of
the conditions that the wrench of each contact has to satisfy. The approach was
tested by simulation in two scenarios: biped climbing up and walking sideways
on the inclined flat surface which is too steep for a regular walk without addi-
tional support. The whole-body motion was synthesized and performed using a
generalized task prioritization framework.

Keywords Humanoid robots · Contact stability · Whole-Body Motion

1 Introduction

The main indicator of dynamical balance, ZMP , was introduced by M. Vuko-
bratović and his closest associates [33,35,32]. The notion of ZMP assumes that
during walking the feet of the robot are in contact with the horizontal ground
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surface and that the friction is high enough so that sliding between the feet and
the ground does not occur. Also, it has been assumed that there are no other
contacts with the environment. The existence of dynamic balance has been pro-
vided by verifying that the position of the ZMP is inside the support area. If the
ZMP is within, but not on the edges of the support area, the robot will not start
overturning by rotating about the edge of the support area.

Several authors have tried to generalize the ZMP notion. Harada et al. [15]
proposed generalized ZMP (GZMP ) to take into account cases when there are
additional contacts, that are not on the ground surface, like in the case when hands
and feet of the robot are in contact with the environment simultaneously. To check
if the intended motion can be performed, GZMP needs to be within the region on
the ground surface, defined on the basis of the mass of the robot and shape of the
convex hull of all contact points. Since the contacts can be distributed spatially,
the convex hull of the contacts is a 3D polyhedron. If GZMP falls outside that
region, the robot will lose dynamic balance and start rotating about one edge of
the polyhedron. The same authors analyzed the influence of additional contact
(i.e., grasping the environment) on the position of ZMP [14], and exploited that
contact in order to enable the robot to climb up the high step by holding the
handlebar.

In [30] the authors have used a special representation of a force screw - ”wrench”,
where force and moment are parallel to each other. They have defined the feasible
solution of wrench (FSW ) and used it to check if the motion is feasible. Gravi-
tational and inertial forces have to be counter-balanced by contact forces so that
their sum has to be in the space of feasible contact forces. That condition can be
used to test existence of dynamic balance when contacts between the feet and the
ground are not in the same plane and when the robot’s hands are in contact with
the environment. Also, the authors have addressed the issue of low friction contact
by introducing another criterion which can determine whether planned motion is
feasible. However, it does not reveal if the sliding is going to occur at a specific
contact point. Recently, Caron et al. [4] introduced a closed-form formulae for the
contact wrench cone for rectangular support areas. These formulae have allowed
a fast computation when creating humanoid motions in the single support phase.
This method is applicable only to rectangular symmetrical robotic feet. However,
it lacks the procedure to generalize to custom foot shapes. Also, the authors did
not discuss the applicability of the method when the robot is in the double support
phase.

1.1 Whole-body motion synthesis in presence of contact constraints

Biped walking has usually been performed on a flat ground surface. In case it
becomes irregular (e.g., walking on inclined surfaces, climbing up the ladder) ad-
ditional contacts of the limbs with the environment may be needed. However, each
of those contacts may have specific requirements and therefore constraints must
be imposed on each contact force when planning whole-body motion. Sentis and
Khatib [27,28] have created a task-prioritization framework capable of synthesizing
statically balanced whole-body motion when only contact between the feet of the
robot and the ground is present. In the case where multiple contacts are present,
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internal forces might be needed so that the contacts remain stable1. In [29], the
same authors addressed that issue by employing a virtual linkage model, in order
to find the required internal forces which will maintain stability of all contacts.
Let us emphasize that the authors introduced a requirement stating all contact
forces have specific predetermined values. This unnecessarily shrinks the space of
possible motion, since contact forces do not need to be kept at some specific value,
but only maintained in a certain range. Recent developments [24] enabled us to
impose inequality-type tasks to a prioritization framework, which was used to syn-
thesize walk on slippery terrain [23]. This approach was validated in [16] where a
slightly different version of the framework was applied on a real torque controlled
robot. The authors have used a momentum control approach in order to control
the behavior of the center of mass (CoM) of the robot, and later extended their
approach [17] in order to synthesize feasible trajectories for the center of mass,
when the contact sequence is given in advance. In [9] the authors have created a
three-layer control structure. The top layer was used to plan foot-step positions.
The middle layer was used to generate trajectories of the CoM and the feet. The
bottom layer used the equality and inequality constrained quadratic optimization
approach to calculate joint torques. The procedure was computationally expensive
and in order to minimize the computational time, a commercially available library
CVXGEN [22] was used to generate a code which solved the quadratic program
(QP). In [19] the authors have created a QP controller for dynamic walking, and
as well as a custom active set QP solver which outperformed CVXGEN 10 times
in the given scenario.

Several authors have employed global optimization with inequality type con-
straints in order to obtain complex movements. Dai, et al. [5] have used simplified
dynamics and full kinematics in order to create feasible motion. That method
is unique in the sense that there is no need to schedule contact sequence in ad-
vance. Complementarity constraints are introduced in the system, so the motion,
as well as contact sequence, is obtained as a result of the nonlinear optimization
procedure. In [20] the authors have addressed the problem of whole-body motion
synthesis by employing semi-definite programming to minimize driving torque and
jerk. Tasks that have to be performed and contact constraints are introduced in
the optimizing procedure as equality and inequality-type constraints. The results
were verified on a real HRP-2 humanoid robot with a number of complex tasks.
The main problem of the last two approaches is that they are time-consuming and
thus cannot be applied on-line.

1.2 Limitations of state of the art methods

In [16,17,22,19,5,20,36] the contact between the foot and the ground was consid-
ered as four separate point contacts, positioned at the corners of the rectangular
feet. In order to maintain stable contact, all four forces have to be within their
respective friction cones. The friction cones were approximated with the four-faced

1 In this context ’stable contact’ represents the situation where there is no relative motion
between the bodies in contact. In our opinion term ’stable contact’ is not the most suitable
to describe the state of the contact when there is no sliding and no separation. It seems that
terms such as ’reliable, sustainable’ are more descriptive.
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pyramids, which can be overly conservative since the volume of the space of fea-
sible forces is reduced by 36%, compared to the full friction cones. Also, that
introduces additional 12 variables per surface contact into an optimization scheme
which makes the whole procedure slower.

In [3] the authors have described how to calculate the contact wrench cone
of the surface contact as well as the gravito-inertial wrench cone using a double
descriptor method [11]. The biggest problem of this method is that the algorithm is
NP-complete which limits the number of faces of the friction cones (thus making it
conservative) as well as the number of points on the contact surface (thus making it
inapplicable for complex foot shapes). In [3] the authors have applied this method
to a robot climbing up the stairs. For a double-support phase with rectangular
feet and 4-faced friction cones, it took approximately 4.5ms just to calculate the
gravito-inertial wrench cone (GIWC). The lowest applicable sampling rate for
torque controlled robots is 200Hz, so 4.5ms for calculating GIWC might be too
high for the control of the real robot since only that single part occupies most of
the time available for calculating referent control torques.

For the case when multiple contacts are present, several papers [3,18] have
derived the cone in which the gravito-inertial wrench (sum of inertial and gravita-
tional wrenches) needs to lie in order for the motion to be feasible. Those methods
are great in terms of simplicity of use since only one matrix multiplication needs
to be performed in order to check if the desired motion is feasible, but on the
other hand, it is time-consuming to recompute the gravito-inertial wrench cone
(GIWC) at each time instance. Sometimes in order to perform the desired motion,
internal forces need to be added to maintain all contacts stable, but the GIWC
notion hides that information.

1.3 Contribution

In this paper we propose a novel form of contact wrench conditions written in
matrix form - Dynamic Balance Matrix (DBM). It provides both necessary and
sufficient condition for contact stability and is applicable to all types of contacts:
point, line and surface contacts with arbitrary perimeter shapes. By carefully con-
sidering the contact mechanics it will be shown here, how the cone, in which the
contact wrench of the planar contact must lie, can be calculated in polynomial
time. The cone would be derived from a convex hull of a set of specially defined
points in five-dimensional space. The DBM is constant when expressed in a coordi-
nate frame of the segment which makes contact with the environment (i.e. robot’s
foot), so it does not need to be recalculated at time step. That makes the proposed
approach computationally efficient and applicable to contact surfaces with arbi-
trary shapes with an arbitrary number of friction cone faces. Also, by imposing
constraints on wrenches instead of forces, the number of introduced variables per
surface contact drops to 6 which makes the procedure even more efficient. The
influence of the shape of the contact surface, the number of sides of friction cone
and orientation of the cone on the DBM will be investigated. It will be shown, as
well, how the frictional forces modulate the effective shape and size of the foot.

The condition which needs to be fulfilled in order for the desired motion to be
feasible is presented also. It explicitly takes into account contact stability, thus giv-
ing information about needed internal loads, without adding too much complexity.
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For the case when the motion is not feasible, the procedure for determining the
CoM offset so that the desired motion becomes feasible is shown. In case that
the offset cannot be found the robot has to create additional contacts with the
environment in order to make desired motion feasible. One method for planning
contact point sequence is described in [7]. Incorporating that into a generalized
task prioritization framework [24] enabled us to generate complex multi-contact
dynamically balanced whole-body motions. After interfacing qpOASES [10] as a
QP solver for MATLAB we were able to lower the reference control torque calcu-
lation time to 5ms. That is a promising result and gives us assurance that this
method could be employed for on-line whole-body motion synthesis. Building a
custom active set QP solver might yield further decrease in calculation time as
reported in [19].

The paper is organized as follows: in section 2 constraints imposed on contact
forces and wrenches are analyzed and the notion of DBM is introduced. This is
the main contribution of the paper. In chapter 3 the procedures for determining
if the desired motion is feasible and if CoM can be shifted so that desired motion
becomes feasible are presented. For the consistency of the paper, in section 4, the
framework for whole-body motion synthesis is briefly presented. The results of the
simulations where the task prioritization framework in conjunction with DBM is
used to create motion are presented in section 5. Conclusions are given in section
6.

2 Dynamic balance matrix

Sustaining contact(s) between the robot and the environment imposes the con-
straints on contact wrenches. To ensure contact stability, wrenches have to be
within a certain range and this has to be taken into account when planning the
motion. If the motion requires wrenches that are outside possible range, this indi-
cates the contact will not remain stable during the execution of the motion.

2.1 Point contact

Contacts between segments of the robot and the environment are unilateral. This
means that segments of the robot can only push against the environment but not
pull it.2 At the point of contact, the coordinate frame will be affiliated, whose z
axis will be normal to the contact surface. The condition for single point contact
can be written in the following form:

Fz ≥ 0. (1)

Besides, we will assume that Columb friction exists between the bodies in contact.
Thus, the forces in the tangential plane must satisfy:

F 2
x + F 2

y ≤ µ2F 2
z , (2)

2 One exception appears to be when the robot grasps an environment, so it can both push
and pull. When looking at the grasp, it is actually comprised of several unilateral contacts, po-
sitioned in such a way that all directions of contact forces are possible. The only real exception
of this assumption is when there is adhesion between the robot and the environment
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where µ represents the friction coefficient. These non-linear constraints imply that
the contact force must be inside the friction cone, as depicted in Fig. 1.

This constraint is quadratic and will be linearized by approximating the friction
cone with a m-faced friction pyramid (Fig. 1). By increasing the number of faces
of the pyramid, the approximation would be better, but that would also increase
the computation complexity. After approximation, constraints (1) and (2) can be
represented by a single linear condition:

Sµ m×3F3×1 � 0m×1 (3)

where each column of matrix Sµ represents one surface of the friction pyramid
and has the form:

Sµk =
[
sin 2kπ

m − cos 2kπ
m µ

]
; k = 0 . . .m− 1. (4)

This is the face representation of the friction pyramid and this form is well-suited
for enforcing constraints on the contact forces when planning multi-contact whole-
body motion. The condition (3) imposed on contact force encompasses both uni-
laterality of the point contacts as well as frictional constraints.

On the other hand, in order to derive the contact wrench cone for the surface
contact, the friction pyramid would be rewritten in the span form. If we take a
look at the friction pyramid it can be noted that all forces that lie within the
friction pyramid can be written as a linear combination of pyramid’s edges. That
can be written as:

F = u1α
1 + u2α

2 + · · · + umα
m = Uααα, αi ≥ 0 (5)

where:

ui =

µ cos 2π(i−1/2)
m

µ sin 2π(i−1/2)
m

1

 ,U =
[
u1 u2 . . . um

]
(6)

and ααα =
[
α1 α2 . . . αm

]T
2.2 Planar contact

Most of the time, contact between the foot of the robot and the ground can be
considered as planar. Constraint on the contact wrench acting on the robotic foot,
which needs to be fulfilled in order to ensure stability of the contact, will be
derived using span representation (5) of the friction pyramid. Sliding conditions
are included and this model also considers the “yaw friction” (the torque generated
by friction in the direction of a normal axis z [4]), which is crucial for avoiding
undesirable yaw rotations of the robot’s feet.

In general, surface contact will be called any contact between an arbitrary
curved ground and planar foot where at least three non collinear point contacts
exist (Fig.2). The surface contact of a single foot and the ground is modeled by
multiple separate point contacts placed at each corner of the foot (for a rectangular
foot, four contact points placed at the corners). It is important to note that the
proposed procedure for deriving contact wrench conditions can be applied when
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Fig. 1: The friction cone (right) and the approximating friction pyramid with
generating vectors (left)

a number of contact points are greater than one. When there are two contact
points we have line contact. If we have 3 or more non-collinear contact points -
there is surface contact. The convex hull of the contact points defines the contact
perimeter. To show that the proposed procedure does not require any shape of the
foot, we will model it as a pentagon of arbitrary shape (Fig. 2).

Fig. 2: Illustration of approximation of planar contact as multiple point contacts.
Top figure: case when foot is only partially in contact with the environment, Bot-
tom figure: case when the complete foot is in contact with the ground
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Total contact wrench acting on the robot foot, calculated for the referent point
P (inside support area) is:[

FP
MP

]
=

[ ∑n
i=1 Fi∑n

i=1 ri × Fi

]
=

[ ∑n
i=1 Uαααi∑n

i=1 [ri]×Uαααi

]
. (7)

Vectors r1 to rn represent positions of contact points relative to referent point P .
[u]× is a skew-symmetric cross product operator matrix. Matrix U can be also
written in the form:

U =

µ cos π
m . . . µ cos π(2m−1)

m

µ sin π
m . . . µ sin π(2m−1)

m
1 . . . 1

 =

µC
µS
1

 , (8)

where 1 represents row vector of lengthm with all elements 1. After introducing
(8) in (7) and calculating the cross product it can be obtained:

[
FP
MP

]
=



µC
∑n
i=1αααi

µS
∑n
i=1αααi

1
∑n
i=1αααi∑n

i=1 yi1αααi∑n
i=1 −xi1αααi∑n

i=1 (−yiµC + xiµS)αααi

 (9)

It can be noted that the normal force is the sum of all alphas Fz =
∑n
i=1

∑m
j=1 α

j
i .

Since all alphas are greater or equal to zero (αji ≥ 0) it can be easily deduced that
normal force has to be greater or equal to zero Fz ≥ 0. We will remove the vertical
force from the wrench vector, so all five other components can be written in the
following form: 

Fx
Fy
Mx

My

Mz

 = P


ααα1

ααα2

...
αααn


(nm)×1

(10)

P =


µC . . . µC
µS . . . µS
y11 . . . yn1
−x11 . . . −xn1

−y1µC + x1µS . . . −ynµC + xnµS


5×(nm)

(11)

When both sides of the equation are divided by Fz we obtain:

p−z =


Fx/Fz
Fy/Fz
Mx/Fz
My/Fz
Mz/Fz

 = p1
α1
1

Fz
+ p2

α2
1

Fz
+ · · · + pn×m

αmn
Fz

, (12)

where p−z represents 5D vector obtained from the contact wrench by removing
normal force Fz and dividing vector by Fz, pi represents point in 5D space which
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corresponds to i-th column of matrix P. Since Fz ≥ 0 and
∑n
i=1

∑m
j=1

αj
i

Fz
= 1,

αji ≥ 0 it can be concluded that the left hand side is a convex combination of the
points pi, thus the vector p−z must lie within the convex hull of the points pi.

The procedure for calculating the convex hull of points in hyperspace is well
known and has low complexity. For the Quickhull algorithm implemented in Mat-
lab the complexity isO (npoints lognpoints)[2], which reduces toO (nm log max(n,m))
for the case considered here. As a result of the Quickhull the hyperplanes that
bound the convex hull are obtained. Each of the hyperplanes introduces one in-
equality constraint that can be written in the form:

v1
Fx
Fz

+ v2
Fy
Fz

+ v3
Mx

Fz
+ v4

My

Fz
+ v5

Mz

Fz
≥ w (13)

where v1 . . . v5 and w are parameters of the hyperplane. After multiplying both
sides with Fz and rearranging the terms in the equation, it can be seen that
one hyperplane from the convex hull introduces one inequality constraint on the
wrench acting on the referent point P:

[
v1 v2 −w v3 v4 v5

] [FP
MP

]
≥ 0 (14)

Each hyperplane introduces one constraint in the previous form, so after stacking
all those constraints together with FZ ≥ 0 in one matrix it can be written:

Z

[
FP
MP

]
� 0 (15)

where Z represents dynamic balance matrix - DBM. It will be proven later that this
is a necessary and sufficient condition for surface contact stability, which includes
unilaterality of the contact as well as sliding. It needs to be emphasized here that
DBM is constant with respect to the local coordinate frame of the robot’s feet, so
it needs to be computed only once for a given foot shape. If only the part of the
foot is in contact with the ground the corresponding DBM has to be recomputed
taking into account the new contact perimeter.3

2.3 Surface contact stability

It will be shown here that condition (15) represents a necessary and sufficient
condition for the weak stability of the surface contacts. We will consider only weak
stability since it is impossible to determine the strong stability in general if the
sufficient friction assumption is removed as stated in [18]. The definition of weak
stability under Columb friction [26] widely used in robotics literature is:

Definition 1. For a given external force F contact is weakly stable if a valid
contact force exists that induces zero body accelerations.

3 An on-line demo showing calculation of the DBM can be found at the author’s website
www.milutinnikolic.info/dbm/



10 Milutin Nikolić et al.

Contact force is said to be valid if it fulfills the conditions (1) and (2). Surface
contacts are a continuum of infinitesimal point contacts, where contact forces at
each infinitesimal point are defined by a pressure field (for normal forces) and
a stress field (for tangential forces). If the pressure and stress are Dirac fields,
it is sufficient to consider only point contacts at the corners of the convex hull
of the contact patch instead of whole surface [4]. Proposition 1 from [3] states
that contact wrench w is valid if and only if there exists valid contact force at
the vertices of the polygon that sum up to w. If the contact wrench is valid the
contact would be weakly stable.

Theorem 1. The given external wrench
[
FT MT

]T
is valid if and only if the

inequality (15) is fulfilled

Proof. Firstly, it needs to be proven if the contact forces at the vertices of the
convex hull are valid then the contact wrench fulfills equation (15). Proof of this
part comes from the procedure for deriving (15).

Conversely, assume that
[
FT MT

]T
fulfills condition (15). In that case Fz ≥ 0

and point p−z lies within the convex hull of points pi. As a result point p−z
can be represented as a convex combination of points pi, meaning that p−z =∑n×m
k=1 βkpk such that βk ≥ 0. By multiplying βk-s with vertical force Fz we

can obtain αji and then reconstruct valid forces that sum up to
[
FT MT

]T
using

(5).

2.4 Properties of DBM

In this section we will briefly discuss the influence of the shape of the foot, number
of faces of the friction cone and friction cone orientation on the number of faces of
the convex hull and thus the number of rows in the DBM. First, we will consider
how the number of faces influences the volume of allowable forces. When the
friction cone is approximated with a regular 4-faced pyramid, the pyramid has only
64% of the cone volume, making the volume of the space of allowed forces after
approximation just 64% of the volume of the whole space. Also in some directions
tangential force is too restricted and in the worst case the tangential force can
not exceed 70.7% of the maximal tangential force. That might be too restrictive
and in order to create less conservative conditions, better approximation of the
friction cone is needed, which is achieved by increasing the number of faces of the
pyramid. In Table 1 the relationship between the number of faces of the friction
pyramid and the percentage of the volume included along with a percentage of the
maximal force is shown. It can be seen that in order to have at least 90% of the
volume covered and at least 90% of max force in all directions, approximation by
a minimum 8 faces is required.

The increase in the number of faces of the friction cone strongly influences the
number faces of convex hull, as seen in Table 1. Also, the shape of the foot and
type of the friction cone influence the number of faces in convex hull. Two types
of the foot will be considered here, shown in Fig. 3, a standard rectangular foot
and irregular 5-sided foot which resembles the shape of human feet more closely.
Also, two types of friction cone orientations will be considered. Type A friction
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Fig. 3: 5-sided and rectangular foot with Type A and Type B friction cones

cone is where faces of the cone are parallel with the x or y axes, thus parallel to
the edges of the rectangular feet; Type B friction cone is rotated so that the edges
of the cone lie in the same vertical plane as the x or y axes. Friction cone defined
by eqns. (5) and (6) is the friction cone of Type A. It can be seen that type of
cone only influences the total number of faces for the rectangular foot when the
number of faces is divisible by 4. If the foot is irregular, the symmetry is broken
and the number of faces of the convex hull grows substantially. On the other hand
the lowest number of faces is obtained for a rectangular foot and Type A cone
with a number of faces is divisible by 4, since in that case all edges of the foot
have parallel faces in the friction pyramid.

Table 1: Volume, Max. Force and Numbers of faces

Number of faces
Cone
Faces

% vol-
ume

% max
force

Rectangular 5-sided
A B A B

4 63.7 70.7 16 32 44 68
6 82.7 86.6 54 50 142 144
8 90 92.4 80 132 238 296
10 93.6 95.1 178 186 456 428
12 95.5 96.6 240 328 602 672

In order to illustrate the influence of the number of faces of the friction cone
to the space of applicable forces, we have studied it’s influence on “yaw friction”,
i.e., maximal torque applicable in direction of the normal z. For each position
of the ZMP we have calculated the maximal applicable yaw torque and created
corresponding heatmaps shown in Fig. 4. The maximal normal torque goes from
-0.05 (represented by the deep blue color), passes through zero (green color) and
goes up to 0.15 (represented with the dark red color). For the case depicted a
unit vertical force (Fz = 1) and friction coefficient µ = 0.9 are used. The left
column corresponds to the case where the tangential force (Columb friction) is 0.
It is evident (going from top to bottom) that the area of high yaw friction grows
when the number of faces increases from 4 to 8 and finally to 12. In cases where
the highest normal torques are required the ZMP is restricted to the center of
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Fig. 4: On the heatmaps a rectangular foot is shown. For each position of the ZMP
on the foot, maximal applicable normal torque is shown in color, starting from -
0.05 (deep blue), passing through zero (green) and up to 0.15 (dark red). Normal
force is 1 and friction coefficient µ = 0.9. Left column: Case when the frictional
forces are zero, Center column: Case when frictional force of intensity 0.5 acts in
the x direction, Right column: Case when frictional force of 0.5 acts in both x
and y directions. Top row: 4 faced friction cone, Middle row: 8 faced friction cone,
Bottom row: 12 faced friction cone. Black lines represent the contours with normal
torques from 0 to 0.12 with step 0.02

the foot when 4 faces approximation is used, but is allowed to be within some
region if the less conservative condition is employed. When the friction acts in the
x direction with intensity of Fx = 0.5 the middle column of Fig. 4 is obtained. In
such an instance area of high applicable normal torque moves in the orthogonal
direction towards the edge of the foot. Also, patches where maximal normal torque
is negative appear at the bottom corners of the foot. That means in order for the
ZMP to be in that area negative normal torque has to be applied.

That effect is even more clear when the friction force is acting in both x and
y directions Fx = 0.5 and Fy = 0.5 (right column in Fig. 4). The whole bottom-
right part of the foot has maximal vertical torque negative, meaning that it is
impossible to have ZMP in that area without appropriate normal torque applied.
That area is much bigger when a 4-faced friction cone is used, compared to the
case when 8-faced and 12-faced friction cones are used. Also, it can be seen how the
required frictional forces and vertical torque modulate the effective size and shape
of the foot, by making it smaller when large frictional forces and ’yaw friction’ is
required.

2.5 System with multiple contacts

When multiple spatial contacts between the robotic system and the environment
exist it is easy to generalize condition (15). An example of such a system is given
in Fig. 5, where two planar contacts exist between the ground and the feet, as well
as point contact between the robot’s hand and vertical wall. Contact wrenches be-
tween the ground and the feet must satisfy condition (15), while contact between
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the hand and vertical wall has to satisfy (3). It is important to recall that these
constraints are given in local coordinate frames of the contacts. Thus, if we express
contact forces in a world coordinate frame, we must pre-multiply them with cor-
responding rotation matrices in order to express them in a local coordinate frame
of the contact. That can be written:

ZL 0 0
0 ZR 0
0 0 Sµ




[
RT
LFL

RT
LML

]
[

RT
RFR

RT
RMR

]
RT
HFH

 = Z̄Fext � 0. (16)

For such a case Composite Dynamic Balance Matrix (CDBM) Z̄ is introduced. It
is a diagonal block matrix of dynamic balance matrices for left (ZL) and right
foot (ZR), and friction cone (Sµ) for robot’s hand multiplied by a diagonal block
matrix consisting of rotation matrices (RL, RR and RH) for each contact. The
vector of generalized contact forces acting on the robot expressed in the world

coordinate frame is denoted by Fext =
[
FTL MT

L FTR MT
R FTH

]T
.

All results from this chapter are briefly summarized in table 2. For each case
considered in this section the table shows:the contact type; assumptions and re-
quired knowledge about contact; resulting constraint and mechanical quantity to
which the constraint is applied. It can be noticed that for all types of contacts, the
orientation of the contact surface is considered to be known. Recently developed
algorithm Kintinuous [37] is able to reconstruct the 3D space around the robot
with resolution under 5mm [8] in real time, using the Microsoft Kinect commodity
RGB-D sensor. Having that in mind, the position and orientation of contact sur-
faces can be assumed to be known. If accuracy provided by Kintinuous algorithm
is not sufficient, it could be further refined by force sensing together with internal
joint angle sensors and kinematic model of the robot.

Table 2: Summary of the constraints

Type of
contact

Assumptions and knowns Constraint Applied to

Point
Contact

Friction coefficient Friction cone expressed
in coordinate frame of
contact surface. Eq. (3)

Contact ForceNormal to the contact surface

Surface
Contact

Friction coefficient DBM expressed in
coordinate frame of
segment in contact.
Eq. (15)

Contact
Wrench

Shape of contact surface
All points must coplanar

Multiple
Contacts

Types of all contacts CDBM expressed in
world coordinate
frame. Eq. (16)

Vector of all
contact forces
and torques

Orientations of all contacts
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Fig. 5: System with multiple contacts. Contacts between the feet and the ground
are considered planar while contact between the hand and the wall is considered
as point contact

3 Motion feasibility

In complex environments, such as the one shown in Fig. 5 it is extremely important
to check if the intended motion is feasible, before a robot initiates its execution.
For example, a robot cannot lift its hand from the surface because the robot will
lose dynamical balance and ultimately fall. Also, if the surface in contact with the
hand has a low friction coefficient, the robot will be unable to maintain even static
posture, since the hand will slide, causing the robot to fall.

The total wrench that all contact wrenches create for the CoM of the system
from Fig. 5 is:

[
FC
MC

]
=

 FL + FR + FH
rCoML × FL + ML + rCoMR × FR+

+MR + rCoMH × FH

 = GCFext. (17)

The matrix GC represents contact matrix calculated for the CoM. It relates all
contact wrenches acting on the body with total wrench acting on the CoM. If a
robot with mass m needs to perform a motion with a desired acceleration of CoM
adesC and desired rate of change of angular momentum L̇desC , contact forces need
to counterbalance gravitational and inertial forces:[

madesC

L̇desC

]
=

[
FC
MC

]
+

[
mg
0

]
. (18)

Since contact wrenches are bounded, total wrench for the CoM can not assume
arbitrary value, meaning that a robot is not able to perform an arbitrary desired
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motion. By combining eqns (16), (17) and (18) it is easy to derive a linear program
whose feasibility tells us if the desired motion is possible:

find Fext

such that: GCFext =

[
m
(
adesC − g

)
L̇desC

]
(19)

Z̄Fext � 0.

If there is a solution to the previous program, the desired motion is feasible,
otherwise desired motion is not feasible. The intuition behind this program is that
it tries to find the external force that produces required motion of CoM (equality
constraint) so that all contacts are stable (inequality constraint). If such force
cannot be found, it either means that contact will become unstable when the
robot tries to perform the motion and consequently fall (inequality constraint is
not fulfilled) or while maintaining all the contacts stable the robot will not be able
to perform desired motion (equality constraint is not fulfilled). The solution to the
problem might not be unique, but finding single external force that fulfills both
constraints is enough to prove that the desired motion is feasible. Although the
idea looks simple, this program is a very powerful tool when determining if some
intended motion can be performed or not. In the case where desired motion is
feasible, it can be easily checked if some contact can be broken so that the desired
motion remains feasible by removing corresponding parts from matrices Z̄,GC

and Fext and running the linear program (19) once more.
When desired motion is not feasible, it is possible to check if CoM can be

moved from point C, whose position is given by rC , to some new point D whose
position is given by rD = rC +∆∆∆, so that the motion becomes feasible. Now, total
wrench of contact forces for point D is:[

FD
MD

]
=

[
FC
MC

]
+

[
0

[FC ]×

]
∆∆∆ (20)

By taking into account that the force acting on CoM must be equal to the sum
of gravitational and inertial forces it is easy to derive the linear program whose
solution is the ∆∆∆:

find ∆∆∆, Fext

such that: Z̄Fext � 0 (21)

GCFext =

[
m
(
adesC − g

)
L̇desC

]
−
[

0[
m
(
adesC − g

)]
×

]
∆∆∆

If a solution to this linear problem exists, it is possible to modify the motion so
that the desired motion becomes feasible. On the other hand, if the solution to
this problem does not exist a robot has to make additional contacts with the envi-
ronment in order to be able to perform the intended motion. The intuition behind
this program is similar as in the previous case. We are trying to find ∆∆∆ and Fext
so that external force would produce required wrench and thus required motion
if CoM is at point D while maintaining all contacts stable. Selection of the right
contact point is out of the scope of this paper, but once the new contact point
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candidate is found it can be tested if additional contact will make movement fea-
sible (additional contacts change vector Fext and matrices GC and Z̄) by running
the program (19).

4 Whole-body motion synthesis

Up to now, the paper has been concerned with motion constraints imposed by
the unilateral contacts with Columb friction. Now, the focus would be switched to
way of using such constraints for synthesizing complex whole body motions. To do
so, the a generalized task-prioritization framework will be employed. It is based
on [27,28] and [29], and full description can be found in [24,23,25]. Although,
the framework is developed as a part of previous research, the short description
will be given in order to make the paper more clear and self-contained. The way
of including motion constraints summarized in table 2 into task prioritization
framework would be briefly described in this section.

Contacts constrain the system, which can be written as J̄q̇ = 0, where the
vectors of robot’s joint coordinates, velocities and accelerations are q, q̇ and q̈. J̄
represents a composite Jacobian matrix for all contacts between the robot and the

environment. For the case shown in Fig. 5 it has the form J̄ =
[
JTL JTR JTHlin

]T
,

where JL and JR are Jacobian matrices for the left and right foot, while JHlin
is just a linear part of the Jacobian matrix associated with the robot’s hand.
Dynamics of the multi body system with contacts is given by:

Hq̈ + h0 = τττ + J̄TFext, (22)

where H is the symmetric positive definite inertia matrix, h0 is the vector which
includes the velocity and gravitational loads, and τττ is the vector of joint torques.
The constraint equation J̄q̇ = 0 can be differentiated with respect to time, obtain-

ing J̄q̈ + ˙̄Jq̇ = 0. Now it is easy to combine the constraint with the dynamics of
the system (22), so in case J̄ has a full row rank, external force can be calculated
from:

Fext =
(
J̄H−1J̄T

)−1 (
− ˙̄Jq̇ − J̄H−1 (τττ − h0)

)
. (23)

This external force must comply with (16) so that all contacts remain stable. This
needs to be taken into account when synthesizing whole-body motion. For such a
purpose the task prioritization framework will be employed.

The goal of the framework is to control the system given by (22) and (23) such
that p tasks written in the form of:

Aiq̈ = bi; Aiq̈ � bi; or AiH
−1τττ � bi (24)

are fulfilled in prioritized manner. That means that any lower priority task is
executed in such a way that it does not interfere with the execution of any task
with higher priority. Tasks of higher priorities are fulfilled without regard to tasks
of lower priorities. Tasks written in the forms of f (t,q) = 0 or f (t,q, q̇) = 0 can
be written in the required form (24) by differentiating them with respect to time
twice or once, respectively. Similarly f (t,q) � 0 or f (t,q, q̇) � 0 can be written in
the required form by expanding them up to the second derivative using the Taylor
series.
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Algorithm 1 Procedure for calculating control torques

1: Nc ← I, Tc ← 0 Ca ← [], Cτ ← [] da ← [], dτ ← []
2: if system with contacts then
3: Nc := I−B+

0 B, Tc := B+
0 (b0 + B0p)

4: end if
5: for every task i do
6: if inequality then
7: if dependent on acceleration then

8: Ca :=

[
Ca
Bi

]
; da ←

[
da
bi

]
9: else if dependent on torque then

10: Cτ :=

[
Cτ
Bi

]
; dτ ←

[
dτ
bi

]
11: end if
12: find u
13: s. t.: r̈ + p = Tc + NcTprev + NcNprevu
14: Car̈ � da
15: Cτ (Tprev + Nprevu) � dτ
16: if system feasible then
17: continue
18: end if
19: else
20: minimize ‖Bir̈− bi‖22
21: s. t. : r̈ + p = Tc + NcTprev + NcNprevu
22: Car̈ � da
23: Cτ (Tprev + Nprevu) � dτ

24: Nprev := Nprev

(
I− (BiNcNprev)+ BiNcNprev

)
25: end if
26: Tprev := Tprev + Nprevu;
27: end for
28: τττ ← H1/2Tprev

Based on [24] the procedure for calculating control torques is derived and shown
in Algorithm 1. For each task the optimization problem is solved and vector of
control torques is updated. Task matrices are modified by post-multiplying them
by the inverse of the root of inertia matrix Bi = AiH

−1/2. Constraint matrix

is B0 = J̄H−1/2 and vector b0 = − ˙̄Jq̇. The importance of these matrices is
emphasized in [31]. The modified vector of joint acceleration is r = H1/2q̈ while
the modified vector of velocity and gravitational effects is p = H−1/2h0. Since the
inertia matrix H is symmetric positive-definite it’s root H1/2 always exists. Null
space of constraint is NC while modified torque induced by constraint is denoted
by TC . Null space of all tasks preceding the current task is denoted by Nprev and
the modified torque which needs to be applied in order to fulfill all tasks preceding
the current one is Tprev. Matrices Ca and Cτ and vectors da and dτ are used in
order to include inequality tasks in the framework.

5 Simulation results

In this section simulation results are presented where the simulation scenarios
are selected to illustrate the capabilities of the proposed approach. The CDBM
and procedures for determining feasibility of the motion and motion modification
described in 3 were used in following the examples. The robot is simulated as a
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floating-base articulated mechanism with total 27 joints (two 7 degree of freedom
(DoF) legs, two 6DoF arms and 1 DoF head). Together with 6 DoF that describe
the position of floating base, the system has total 33 DoF. The geometry of the
robot as well as masses and moments of inertia of all the segments are chosen
to resemble the adult male person. The simulation of floating-base mechanism is
performed based on [34], while the model of rigid body with viscoelastic layer was
used to simulate contacts with Columb frictions[12,13].

5.1 Climbing up the steep ramp

In this scenario a robot should climb up a steep ramp angled at 45◦. Due to high
inclination and finite frictional forces it is not possible for the robot to simply
walk up the ramp. In order to climb over it the robot has to grasp the handlebars
which are at the top of the ramp. This scenario is chosen to illustrate point, line
and surface contacts, with cases of single and multiple contacts and with diverse
spatial distribution of the contacts.

From a task-prioritization perspective, during the motion the robot had to
perform several tasks. The task of the highest priority was to maintain joint torques
between the predefined saturation limits. This can be easily written in the required
form (third case in (24)). The task of second highest priority was to maintain
dynamic balance by maintaining stability of all contacts. That can be written in
the same form as the previous task by combining eq. (16) and (23). This task is
always present, but only Z̄ changes its form, due to changes of contact configuration
during the motion.

The next task imposed was that the CoM has to follow a predefined trajectory.
This can be written as:

A3 = JC , b3 = ẍ3|des − J̇C q̇ (25)

where JC represents a Jacobian matrix associated with CoM, and ẍ3|des represents
the desired acceleration of the CoM. In case the robot needs to move one of its
limbs, the following task must be included:

A4 = JP , b4 = ẍ4|des − J̇P q̇ (26)

where JP is the Jacobian matrix associated with the limb the robot has to move
and ẍ4|des is the desired acceleration of the limb. In case the robot needs to move
more than one limb, Jacobian matrices for all limbs are concatenated in matrix
JP . The same situation holds for ẍ4|des. The fifth task the robot has to perform
is to maintain its trunk vertical, which can be written as:

A5 = JtrR, b5 = ẍ5|des − J̇trRq̇. (27)

The Jacobian matrix associated with trunk rotation is JtrR, while the desired
trunk angular acceleration is ẍ5|des. Desired acceleration is calculated as an output
of simple a PD controller. The last task that the robot has to perform is to achieve
a configuration which is as close as possible to the initial posture of the robot:

A5 =
[
0N×6 IN×N

]
, b5 = ẍ5|des (28)
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The number of joints of the robot is denoted as N , and position of the first 6
DoFs is not controlled since they represent the position of a free-floating base of
the robot [25].

When tasks are defined, a generalized task prioritization framework’s procedure
for calculating control torques (Alg. 1) can be employed. Obtained motion is shown
on Fig. 6, and it is clear that the robot was able to climb up the ramp by making
additional contacts. When looking closely at the contacts, it is obvious that they
remain stable throughout each of the several phases the robot passes through. In
the first phase, the robot places its left foot on to the steep ramp (top-left). While
doing so, the robot is in the single support phase. After that the robot grasps the
handlebars (top-right). During that phase both robot’s feet are in contact with the
ground but with different surfaces. After grasping the handlebars the robot pulls
itself up and places its right foot on top of the ramp (bottom-left), thus introducing
internal loads. In this phase only the line contact is required between the front edge
of the left foot and steep ramp. In order to move from surface contact in second
phase to line contact in third phase, the dynamic balance matrix for that foot
had to be recalculated. Contact between the hands of the robot and handlebars
are modeled as a point contact (i.e. fingers of the hand are pushing against the
forward-facing side of the handlebars). Finally, on the bottom right figure, the
robot pulls itself forwards and places the left foot on the top of the ramp, while
maintaining point contacts between the hands and handlebars and planar contact
between the right foot and the top of the ramp. Internal load had to be introduced
in the system in order to increase the normal contact force, thus avoiding sliding of
the right foot. The amount of the internal load is not defined strictly as in [29], but
the torques are calculated so that Composite Dynamic Balance Matrix constraint
(16) is satisfied. The planning of the motion and feet placement is out of the scope
of this paper.

On Fig. 7 the trajectory of CoM and centers of pressure for feet are shown.
ZMP is never depicted, since contacts are never on the same plane, so the ZMP
in its classical form cannot be defined. It can be clearly seen that when surface
contact exists CoP of the foot is never on the edge, thus making contact potentially
unstable. Also when line contact appears, CoP is on that line, but not at its ends,
ensuring that the contacts remain stable. On the same figure it can be seen that
the footprints did not move, meaning that sliding did not occur during the motion.

5.2 Walking sideways on inclined surface

In this scenario the robot should move sideways, while its feet are in contact with
a surface angled at 45◦. Although the friction coefficient is high (µ = 0.8), the
robot is unable to stand on the slope without additional contact between the hand
and the horizontal surface, because the ground reaction force acting on the feet
will always have a horizontal component which will tend to push the CoM towards
the wall.

During the motion, the robot was always in contact with the environment
with at least three of its limbs, while it was moving its fourth limb in the direction
of the motion. To perform such a pattern, the robot had to fulfill several tasks,
similar to the previous case. As before, the the highest priority was to maintain
joint torques between the predefined saturation limits. The task of the second
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Fig. 6: Simulated motion when robot climbs up the steep ramp with the aid of the
handlebars
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Fig. 7: Positions of CoM and centers of pressure (CoP) for feet
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Fig. 8: Robot moving sideways. Each snapshot presents one phase of the motion
when robot moves just one of its limbs. A pink ribbon represents the low friction
area.

highest importance was to maintain all contacts stable. As mentioned earlier, it is
inequality type task dependent on joint torques that can be obtained in required
form (24) by combining eqns. (16) and (23). Matrix Z̄ changes over time because
of the changes in configuration of the contacts. The next task that the robot had to
perform was that CoM following a predefined trajectory. The task for repositioning
one of the limbs had the second lowest priority. The last task that the robot had to
perform was to maintain a configuration as close as possible to the initial posture
of the robot.

When the robot moves sideways it repositions its limbs in the following order:
right hand, left hand, right foot, left foot. The procedure for calculating torques
described in Alg. 1 is employed, and the results of the simulation are shown in
Fig. 8. The robot was able to move to the right with ease, until it puts the right
hand on the low friction patch (µ = 0.2 shown as a pink ribbon; first image on
the top row). Before trying to reposition its next limb in order, the left hand,
robot first checks if that would jeopardize the dynamic balance. The result shows
that the robot would lose dynamic balance, since the hand on the low-friction
patch would slide and the robot would fall. Because of that robot first repositions
its right hand out of the low-friction patch. Only then robot is able to continue
repositioning sequence, i.e. first to move left hand, then move right leg (third and
fourth image in first row).

After several cycles, the robot places its left hand on the low-friction patch
(first figure in bottom row). But in that case, the robot is able to move its right
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(a) Climbing up (b) Walking sideways

Fig. 9: Torques at knee and ankle when robot is (a) climbing up the steep ramp
and (b) walking sideways on inclined surface

leg forward with its left hand on a low-friction patch because the right hand takes
most of the load. When robot wants to move its left foot forward, it is unable to
do so, so it needs to remove the left hand from the low-friction patch first and
then move the left foot forwards.

The scenarios presented in the paper show movements that would be hard
for humans to perform and might require a lot of power. After looking at the
simulation results, it can be seen that knee and ankle joints were closest to the
saturation limits, preset to 130Nm (see Fig.9). It can be noted that torques in
these joints are reaching the saturation limits several times. The task prioritization
framework helps the robot perform the desired tasks while maintaining stable
contact, even when motors reach torque saturation limits. The preset limit of
130Nm is three to four times the amount of torque needed for a regular walk
of humans [6,38]. Although that might seem high, the research has shown that
humans are able to achieve such high torques [1], so as the robots (for example
state of the art humanoid robot Lola [21] can achieve such high torques). That
means the proposed framework is generating physically realistic motions that can
be performed by both humans modern humanoid robots.

6 Conclusion

In this paper we have proposed a novel criterion for dynamical balance called
Dynamic Balance Matrix. It can be used for point, line and surface contacts of
arbitrary shape. Dynamic Balance Matrix takes into account both separation of
the surfaces in contact and sliding between them. It has been shown that this
condition is both necessary and sufficient to provide contact stability. Correlation
between the size of DBM and the shape of the foot, number of sides of friction
cone and orientation of the cone has also been studied. An example was presented
how required frictional forces and normal torque (’yaw friction’) modulate the
effective shape and size of the foot.

In addition, the proposed approach enables testing of dynamic balance in case
the system has multiple spatially distributed contacts with the environment. In
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such a case Composite Dynamic Balance Matrix should be used. This approach
can also be used to verify the dynamic balance of planned motion. If it is infeasible,
motion can be replanned with additional contacts, until it becomes feasible. One
such example was used to illustrate the proposed approach and whole-body mo-
tion synthesis using generalized task-prioritization framework. Promising results
were obtained after interfacing qpOASES which lowered the time of calculation of
desired torques to 5ms, which gives assurance that this method could be used for
on-line whole-body motion synthesis.
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32. Vukobratović, M., Borovac, B.: Zero-moment pointthirty five years of its life. International
Journal of Humanoid Robotics 1(01), 157–173 (2004)
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